Apakah AI yang Bertanggung Jawab Memuncak?
Bukan rahasia lagi bahwa pandemi telah mempercepat adopsi dan, yang lebih penting, keinginan organisasi untuk mengadopsi kemampuan kecerdasan buatan (AI). Namun, sangat sulit untuk membuat AI bekerja. Hanya 6% organisasi yang dapat mengoperasionalkan AI, menurut survei AI Bertanggung Jawab global PwC baru-baru ini terhadap lebih dari 1.000 peserta dari organisasi terkemuka di AS, Inggris, Jepang, dan India. Lebih dari separuh perusahaan dalam survei tersebut mengatakan bahwa mereka masih bereksperimen dan tetap tidak berkomitmen pada investasi besar dalam kemampuan AI.
Tetapi perusahaan yang memiliki strategi AI tertanam dapat lebih andal menerapkan aplikasi dalam skala besar, dengan adopsi yang lebih luas di seluruh bisnis, daripada yang tidak. Perusahaan yang lebih besar (lebih dari $1 miliar) khususnya secara signifikan lebih mungkin untuk mengeksplorasi kasus penggunaan baru untuk AI (39%), meningkatkan penggunaan AI mereka (38%), dan melatih karyawan untuk menggunakan AI (35%).
AI yang Bertanggung Jawab
Sementara beberapa tantangan untuk operasionalisasi bersifat teknis atau dibatasi oleh keterampilan set, kesenjangan kepercayaan tetap menjadi penghambat.
Tren utama adalah menggabungkan praktik “AI yang bertanggung jawab” untuk menjembatani kesenjangan kepercayaan ini. AI yang bertanggung jawab terdiri dari alat, proses, dan orang yang diperlukan untuk mengontrol sistem AI dan mengaturnya dengan tepat sesuai dengan lingkungan tempat kami ingin beroperasi dan diimplementasikan menggunakan kemampuan teknis dan prosedural untuk mengatasi bias, kemampuan menjelaskan, ketahanan, keselamatan, dan keamanan kekhawatiran (antara lain). Maksud dari AI yang bertanggung jawab, yang terkadang disebut sebagai atau digabungkan dengan AI tepercaya, etika AI, atau AI yang bermanfaat, adalah untuk mengembangkan AI dan sistem analitik secara metodis, memungkinkan sistem berkualitas tinggi dan terdokumentasi yang mencerminkan keyakinan dan nilai organisasi dan meminimalkan bahaya yang tidak diinginkan
AI yang bertanggung jawab di perusahaan
Apresiasi atas kekhawatiran baru yang dapat ditimbulkan oleh AI pada suatu organisasi telah menyebabkan peningkatan yang signifikan dalam aktivitas mitigasi risiko. Organisasi mengejar strategi untuk mengurangi risiko aplikasi individu serta risiko yang lebih luas yang ditimbulkan pada bisnis atau masyarakat, yang semakin dituntut oleh pelanggan dan regulator (Gambar 1). Risiko ini dialami di tingkat aplikasi, termasuk ketidakstabilan kinerja dan bias dalam pengambilan keputusan AI; tingkat bisnis, seperti risiko perusahaan atau keuangan; dan tingkat nasional, seperti perpindahan pekerjaan dari otomatisasi, dan misinformasi. Untuk mengatasi risiko ini dan lebih banyak lagi, organisasi menggunakan berbagai tindakan mitigasi risiko, dimulai dengan tindakan ad hoc dan maju ke proses tata kelola yang lebih terstruktur. Lebih dari sepertiga perusahaan (37%) memiliki strategi dan kebijakan untuk mengatasi risiko AI, meningkat tajam dari tahun 2019 (18%).
Gambar 1: Taksonomi risiko, PwC
Terlepas dari peningkatan penekanan pada mitigasi risiko, organisasi masih memperdebatkan cara mengatur AI. Hanya 19% perusahaan dalam survei yang memiliki proses terdokumentasi formal yang dilaporkan ke semua pemangku kepentingan; 29% memiliki proses formal hanya untuk menangani acara tertentu; dan keseimbangan hanya memiliki proses informal atau tidak ada proses yang jelas sama sekali.
Sebagian dari perbedaan ini adalah karena kurangnya kejelasan seputar kepemilikan tata kelola AI. Siapa yang memiliki proses ini? Apa tanggung jawab pengembang, fungsi kepatuhan atau manajemen risiko, dan audit internal?
Bank dan organisasi lain yang telah tunduk pada pengawasan peraturan pada algoritme mereka cenderung memiliki fungsi yang kuat (“kedua -line”) yang dapat memvalidasi model secara independen. Namun, yang lain harus bergantung pada tim pengembangan yang terpisah, karena lini kedua tidak memiliki keterampilan yang sesuai untuk meninjau sistem AI. Beberapa dari organisasi ini memilih untuk memperkuat tim lini kedua mereka dengan lebih banyak keahlian teknis, sementara yang lain membuat pedoman yang lebih kuat untuk jaminan kualitas di lini pertama.
Terlepas dari tanggung jawab, organisasi memerlukan metodologi pengembangan standar, lengkap dengan gerbang panggung pada titik-titik tertentu, untuk memungkinkan pengembangan dan pemantauan AI berkualitas tinggi (Gambar 2). Metodologi ini juga meluas ke tim pengadaan, mengingat banyak sistem AI memasuki organisasi melalui vendor atau platform perangkat lunak.

Gambar 2: Gerbang tahap dalam proses pengembangan AI, PwC
Kesadaran akan risiko AI melengkapi tren lain untuk mempertimbangkan etika teknologi—mengadopsi praktik untuk pengembangan, pengadaan, penggunaan, dan pemantauan AI yang didorong oleh “apa yang harus Anda lakukan” daripada “apa dapatkah kamu melakukan”.
Meskipun ada banyak prinsip etika untuk AI, data, dan teknologi, keadilan tetap menjadi prinsip inti. Tiga puluh enam persen responden survei mengidentifikasi bias algoritmik sebagai area fokus risiko utama, dan 56% percaya bahwa mereka dapat mengatasi risiko bias secara memadai. Seiring dengan semakin matangnya perusahaan dalam mengadopsi AI, mereka juga cenderung menggunakan bias algoritmik sebagai fokus utama, mengingat keahlian dalam mengembangkan AI dan kesadaran akan masalah seputar risiko AI. Tingkat keadilan sebagai prinsip terpenting kelima bagi perusahaan yang matang dengan AI versus berada di tempat kedelapan untuk organisasi yang kurang matang. Prinsip-prinsip lain termasuk keselamatan, keamanan, privasi, akuntabilitas, kemampuan menjelaskan, dan agensi manusia. Pendekatan organisasi untuk menerapkan AI dan etika data cenderung berfokus pada inisiatif sempit yang dianggap terpisah dan menggunakan alat sekali pakai seperti penilaian dampak dan kode etik. Perusahaan besar dengan penggunaan AI yang matang secara signifikan lebih mungkin untuk berinvestasi dalam berbagai inisiatif, termasuk melakukan penilaian dampak (62%), membuat dewan etika (60%), dan memberikan pelatihan etika (47%). Dorongan ini menandakan pengakuan bahwa beberapa inisiatif internal akan diperlukan untuk mengoperasionalkan AI yang bertanggung jawab.
Apa yang dapat dilakukan organisasi
- Tetapkan prinsip untuk memandu: Serangkaian prinsip etika yang diadopsi dan didukung oleh kepemimpinan memberikan bintang utara bagi organisasi. Namun, prinsip saja tidak cukup untuk menanamkan praktik AI yang bertanggung jawab. Pemangku kepentingan perlu mempertimbangkan prinsip-prinsip dalam konteks pekerjaan sehari-hari mereka untuk merancang kebijakan dan praktik yang dapat diterapkan oleh seluruh perusahaan.
-
- Pertimbangkan kepemilikan tata kelola: Untungnya, banyak pemimpin dalam organisasi tertarik untuk membangun praktik tata kelola untuk AI dan data. Namun, tanpa menentukan pemilik untuk tata kelola ini, organisasi kemungkinan akan menemukan masalah yang berbeda—praktik terpisah yang mungkin bertentangan satu sama lain. Identifikasi tim mana yang harus merancang pendekatan tata kelola, dan setujui pemilik dan proses untuk mengidentifikasi pembaruan pada kebijakan yang ada.
Mengembangkan proses yang terdefinisi dengan baik dan terintegrasi untuk data, model, dan siklus hidup perangkat lunak: Menerapkan proses standar untuk pengembangan dan pemantauan, dengan gerbang tahapan tertentu untuk menunjukkan di mana persetujuan dan tinjauan diperlukan untuk melanjutkan (Gambar 2). Proses ini harus terhubung ke data yang ada dan mekanisme tata kelola privasi serta siklus hidup pengembangan perangkat lunak.
Pecah silo: Sejajarkan seluruh kelompok pemangku kepentingan yang diperlukan untuk menghubungkan tim dengan tujuan berbagi ide dan praktik kerja unggulan. Buat inventaris umum untuk AI dan data untuk proses tata kelola, dan gunakan latihan ini sebagai kesempatan untuk mempertimbangkan perubahan struktural atau penyelarasan yang dapat memungkinkan bisnis berjalan lebih baik.
Awasi iklim peraturan yang berubah dengan cepat: Bukan hanya pelanggan, investor, dan karyawan yang menuntut praktik yang bertanggung jawab. Regulator memperhatikan dan mengusulkan undang-undang di tingkat negara bagian, regulator, nasional, dan supranasional. Beberapa peraturan berasal dari upaya perlindungan data dan privasi yang diperluas, beberapa dari regulator khusus pada area kasus penggunaan yang sempit (seperti perbankan), dan beberapa dari keinginan yang lebih umum untuk meningkatkan akuntabilitas (seperti Undang-Undang Kecerdasan Buatan Uni Eropa). Mengikuti peraturan ini adalah kunci untuk mengidentifikasi aktivitas kepatuhan di masa mendatang.
Dengan tindakan ini, organisasi akan memiliki posisi yang lebih baik untuk mengatasi risiko AI dengan cara yang tangkas.
Pelajari bagaimana PwC dapat membantu organisasi Anda membangun praktik AI yang bertanggung jawab.
Baca selengkapnya
Rekomendasi:
- Pemasar merek menjembatani kesenjangan B2C-B2B… Lanskap data pemasaran berada di tengah-tengah berbagai pergolakan peraturan dan teknologi pada tahun 2022, tetapi pergeseran yang akan terbukti paling berdampak bagi pemasar dalam jangka panjang sebenarnya sangat manusiawi: Dinding…
- Amerika Serikat telah kalah dalam pertempuran AI… Silakan coba pencarian lain Ekonomi1 jam yang lalu (11 Oktober 2021 02 :40AM ET) © Reuters. FOTO FILE: Kendaraan pengiriman otonom oleh Damo ditampilkan di Konferensi Kecerdasan Buatan Dunia (WAIC)…
- Lebih banyak pekerja AS membeli saham majikan mereka… Silakan coba pencarian lain Ekonomi3 jam yang lalu (04 November 2021 05 :01PM ET) © Reuters. FOTO FILE: Sebuah tanda jalan, Wall Street, terlihat di luar New York Stock Exchange…
- Sebuah Kata Peringatan untuk Tenaga Kerja… Menjelang peringatan dua tahun awal pandemi COVID-19, saya mengingat kembali berapa kali saya ditanya oleh klien dan kolega tentang apakah tenaga kerja TI jarak jauh akan menjadi pekerja sementara atau…
- Mengapa menetapkan prioritas utama sangat penting… Berikut adalah pilihan dari e-book “Pemasaran tangkas MarTech untuk tim.” Silakan klik tombol di bawah untuk mengunduh e-book lengkap.Tim pemasaran tangkas terbaik yang pernah saya lihat adalah ahli dalam memprioritaskan.…
- Penelitian dan pengembangan AI global Forum Kerjasama Kecerdasan Buatan (FCAI) menyelidiki peluang dan hambatan kerja sama internasional untuk pengembangan kecerdasan buatan (AI) yang bertanggung jawab. Acara ini mempertemukan para ahli dari industri, akademisi, dan masyarakat…
- Orang-orang masih mempercayai teknologi, meskipun… Pekerja di platform gig-ekonomi memprotes, Washington DC dan Brussels menindak Apple dan Google, dan pemerintah China bermaksud membatasi pengaruh perusahaan teknologinya. Tetapi survei baru menunjukkan bahwa orang lebih mempercayai industri…
- Cara Membuat Karyawan (Sebenarnya) Berpartisipasi… Penelitian baru dari Gartner mengungkapkan bahwa meskipun 87% karyawan memiliki akses ke penawaran kesejahteraan mental dan emosional, hanya 23% karyawan yang menggunakannya. Penulis menyarankan tiga strategi untuk meningkatkan partisipasi karyawan…
- Fraugster bekerja sama dengan Elvah untuk mengatasi… Pekan lalu, penyedia intelijen pembayaran Fraugster mengumumkan bahwa mereka telah menjalin kemitraan dengan perusahaan e-mobilitas Elvah untuk menciptakan layanan perlindungan pembayaran terkelola baru. Di masa depan, Elvah akan menawarkan perlindungan…
- Memanfaatkan AIOps di Industri Keuangan Kapan terakhir kali Anda masuk ke bank untuk menarik uang tunai? Dan seberapa sering Anda menyeimbangkan buku cek Anda? Proses manual yang dulunya rutin ini sekarang sebagian besar bersifat digital,…
- Hitachi Memperkuat Struktur Bisnis untuk Pertumbuhan… Hitachi Memperkuat Struktur Bisnis untuk Pertumbuhan Lebih Lanjut melalui Digital, Lingkungan, dan Inovasi TOKYO, 02 Februari 2022 - (JCN Newswire) - Hitachi, Ltd. (TSE: 6501) hari ini mengumumkan bahwa mulai…
- Versi Bitcoin dari 'Giving Tuesday' Kembali… Platform filantropi The Giving Block meluncurkan inisiatif Crypto Giving Tuesday pada hari Selasa, 30 November, menurut pernyataan yang dikirim ke Bitcoin Magazine. Kampanye ini akan berlangsung pada hari yang sama…
- 3 Pelajaran Manajemen Risiko Teratas Jenderal… Pada tahun 1930-an, dengan gambaran mengerikan Perang Dunia Pertama masih segar, Prancis membangun garis besar benteng di sepanjang perbatasan mereka dengan Jerman, Garis Maginot, untuk mencegah risiko terulangnya pembantaian yang…
- Menciptakan bisnis yang fleksibel secara finansial… Tidak ada yang lebih menyoroti kebutuhan akan fleksibilitas keuangan selain volatilitas dunia bisnis selama satu setengah tahun terakhir. Selama pandemi Covid-19, pemilik bisnis di setiap industri belajar tentang beradaptasi dengan…
- Microsoft Teams akhirnya mendapatkan pembaruan yang… Bekerja sama dengan orang lain di luar organisasi Anda di Microsoft Teams akan segera dimungkinkan berkat pembaruan baru untuk alat kolaborasi online Microsoft.Kelompok kerja sering kali melampaui satu organisasi dengan…
- Konsorsium AS Mempersiapkan Kecerdasan Buatan yang… Menavigasi Dunia Kecerdasan Buatan: Memperkenalkan Saham AI Terbaik untuk Diperhatikan. Di sinilah kecerdasan buatan (AI) menjadi rumit – akankah robot menjadi liar? Atau akankah mereka menjadi teman kita yang suka…
- RUU NYC melarang alat perekrutan AI yang gagal dalam… Kota New York dapat segera mengurangi kemungkinan bias AI di pasar kerja. Associated Press mencatat dewan kota telah mengesahkan undang-undang yang melarang sistem perekrutan AI yang tidak lulus audit tahunan…
- Mengapa ibu hamil tidak divaksinasi? Bisakah seorang wanita hamil divaksinasi?Ada bukti yang terdokumentasi dengan baik tentang kemanjuran, keamanan dan manfaat dari imunisasi ibu. Namun terlepas dari bukti dan rekomendasi penyedia layanan kesehatan ini, banyak wanita…
- Apakah Jaringan Aplikasi Pembunuh Baru? Ketika perusahaan berbicara tentang "aplikasi pembunuh", mereka mengacu pada aplikasi yang sangat penting bagi organisasi mereka sehingga jika mereka tidak memiliki aplikasi ini, organisasi mereka mungkin tidak berfungsi sama sekali.…
- Apakah janji nol-emisi McDonald's lebih dari… McDonald's ingin mencapai emisi nol bersih secara global pada tahun 2050.Rencananya tidak jelas, tetapi raksasa makanan cepat saji itu mengatakan akan mengurangi emisinya di seluruh restoran, kantor, dan rantai pasokan,…
- Hampir setengah dari perusahaan FTSE 100 tidak… Silakan coba pencarian lain Ekonomi36 menit yang lalu (20 Oktober 2021 01 :10AM ET) © Reuters. FOTO FILE: Distrik keuangan Canary Wharf terlihat di London timur 12 November 2014. REUTERS/Suzanne…
- Saham Avis naik lebih dari tiga kali lipat setelah… Hanya butuh petunjuk menuju transisi kendaraan listrik untuk mengirim harga saham Avis Budget Group melonjak ke level tertinggi kemarin (2 November) setelah eksekutif di perusahaan rental mobil mengatakan mereka punya…
- Cara Membangun Program Peningkatan Keterampilan yang Sukses Upskilling adalah investasi jangka panjang dalam menambah pengetahuan, keterampilan, dan kompetensi yang membantu karyawan memajukan karir mereka. Ketika karyawan ditawarkan dan didorong untuk memanfaatkan peluang peningkatan keterampilan untuk pertumbuhan pribadi…
- Mengapa Kode Rendah adalah Pemersatu Hebat untuk… (SPONSORED ARTICLE) Biksu abad pertengahan: Kami telah membacanya dan kemungkinan besar mengalaminya dalam tim kami sendiri. Pandemi telah menyebabkan orang-orang untuk memprioritaskan kembali kehidupan mereka, yang telah mengakibatkan banyak yang…
- Apakah tim pemasaran Anda memerlukan alat analisis… Mengingat bahwa perjalanan pelanggan untuk membeli dan seterusnya semakin kompleks karena semakin banyaknya perangkat, saluran, dan opsi di ujung jari mereka, bisnis mencari solusi seperti perjalanan pelanggan alat analitik untuk…
- Rancangan undang-undang UE akan mengharuskan… Silakan coba pencarian lain Ekonomi5 jam yang lalu (21 Februari 2022 03 :55PM ET) © Reuters. FOTO FILE: Bendera UE berkibar di depan markas Komisi Eropa di Brussels, Belgia 2…
- RUU NYC melarang alat perekrutan AI yang gagal dalam… Kota New York dapat segera mengurangi kemungkinan bias AI di pasar kerja. Associated Press mencatat dewan kota telah mengesahkan undang-undang yang melarang sistem perekrutan AI yang tidak lulus audit tahunan…
- Karyawan dengan Kualitas 1 Ini Berkinerja Tinggi.… Jika Anda memikirkan kualitas yang paling diinginkan seorang karyawan, pikiran Anda mungkin pertama-tama tertuju pada hal-hal yang menjadi andalan seperti keterampilan kepemimpinan yang kuat, ambisi, atau etos kerja. Ciri-ciri ini,…
- KubeCon + CloudNativeCon Soroti Keamanan untuk Open Source KubeCon + CloudNativeCon Amerika Utara minggu ini secara langsung dan konferensi virtual menempatkan keamanan untuk pengembangan sumber terbuka kembali menjadi sorotan sementara juga membicarakan peningkatan pesat cloud native. Pryanka Sharma,…
- Pandemi Menciptakan Urgensi yang Diperbarui untuk… Pandemi Menciptakan Urgensi yang Diperbarui untuk Transformasi Agile Selama bertahun-tahun, banyak organisasi telah melihat cara kerja yang gesit sebagai jalan menuju kesuksesan. Perusahaan masa depan akan selalu didorong oleh data…